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Electronic Throttle System
Identification and Control

Dr. Arek Dutka
ACTC

Bvav © The Applied Control Technology Consortium

Electronic Throttle Body

Connector pins
Return spring
Throttle vave
Coil

Pedal sensor

Pedal and Throttle positions decoupling resultsin:
- Lower fuel consumption
- Better engine torque control

- Different engine response available (normal, snow, mountains)
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System Overview

Laptop PC with LabVIEW
- VI-Programming & Deploy
- Identification & Control Design

- Remote Control & Monitoring

PWM Control-Signal

PX| with LabVIEW RT /

- Signd Generation
o Measurements
- Data Acquisition

lP\NM Driving-Signal

- Control Algorithm

Electronic Throttle
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Hardware Connections

LabVIEW RT 8.2 (Real-Time Target) .

LabVIEW 8.2 (Laptop)
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Electronic Throttle

Hardwware in the loop
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Driver (Power Amplifier)
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Steady State Characteristic
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System model structure

B The following Hammerstein model structure will be used

for modelling

Results will be compared with the pure linear model
B The above model structure suggests that the steady-state
characteristic is a part of the system located before the

linear dynamics
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l

System model structure

B The assumption may not bein line with reality
Steady-state response and dynamics may hot be separable
Dynamics may be non-linear

B |et’sassume that our assumptions are sufficiently

accurate

Remove the steady-state behaviour by using a pseudo-inverse of
the steady-state characteristic

SS characteristic inverse _ —
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System model structure

B Assuming that the static nonlinearity is cancelled out by
the pseudo-inverse the remaining model of the systemis
linear:
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Identification Experiment

B [nverse of the input characteristic scales the input to the
‘virtual linear system’ with the similar input-output range
Thisrangeisabout 0.63 ... 4.53[V]
B Therandom signal is generated and passed through the
inverse of the steady-state characteristic

Signal that is obtained on the SS Characteristic output isaDuty
Cycle signal that is sent to the power amplifier and the Electronic

Throttl€ scoil




Identification Experiment
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Input for Linear model identification
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Identification Experiment

Hammerstein model identification: Validation Data
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Identification Experiment

Linear model identification: Identification Data
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Identification Experiment

Linear model identification: Validation Data
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More data...

hammers tein AN

linear [

Output Data - validation set measured RN
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More data...

Outpuk Data - validation set measured
3,46

3,30
3.20-]
3.10-]
3.00-]
2,90
2,60
2.70]
2,60
2,50}
2.40-]
2.a0-l|
%z.zuf
Ez.m— |
2.00-]
1,90~
1.60-]
1,70+
e |

DUQV © The Applied Control Technology Consortium

1200 1400 2000 2z00 2400
— Samples [10 ms]
R
hammerstein |GG
line ]
Qutput Data - validation set mezswred  [EANG

1,07 =)

1.06-|
1,051
1,04
1.03
1.02-|
1.01-| "\

1.00- 1|8

1200 1400 2000 2200 2400

Samples [10 ms]




%ﬁv © The Applied Control Technology Consortium

More data...

hammerstein BN
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Controller: Hand-tuned - PID
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Controller: PID from IMC tuning
based on linear model

Armglifude
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*10ms

Controller: Hammerstein — Pl from
Z-N tuning
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Physical Model

Coil resistance changes .
Springs

with Temperature torques |

Friction

w | torques \
T Tr

Voltage y T < No a .
TR + Facs \ 5_IThrottle Angle
N
Ca
Ks
- Neglected el ectric dynamics -Friction torques ( stictiorvCoulomb friction)
- Back electromotive force
- Spring torque

R.Scattoliniet al.: ,Modeling and Identification of an electromechanical Internal Combustion
Engine Throttle Body. Control Eng. Practice, Vol. 5, No.9, pp. 1253-1259, 1997.
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Physical Model Identification
Result
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Mean squared error of scaled data:
0.057

* Note: Hammerstein model was 0.026
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Problems with EKF identification

* The discretisation of the system with discontinuities causes numerica
problems (e.g. Coulomb friction — subgtituted by tanh() )

» The model contains 6 unknown parameters— simultaneous identification
dependsoninitial conditions

« Overdl, poor knowledge of theinitial system parameters which caused
problems

» Unmodelled nonlinearities, observable in the steady state characteristic,
might affect these results

bvﬁv © The Applied Control Technology Consortium

Simulation model

Spring Stiffness {K_Sp)

Motar: K_C €+>
Coulomb Friction {k_F) 3

, b
prEEE

‘tzaf B :

<]

13



%ﬁv © The Applied Control Technology Consortium

Alternative Control Technique

M PID control performance was not good
enough: poor speed of response

Thiswas the case for PID controller designed
based on:
EManual tuning
M| inear model based tuning
ENon-Linear model based tuning
M The best result was obtained for
Hammerstein model

But with significant amount of control activity
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Alternative Control Technique

M Since the throttle is controlled through
PWM modulation, the control signal is
discontinuous and fast-switching

M This suggests that Sliding Mode control
technique might be considered

B We'll use system simulation to investigate
properties of that control technique
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Sliding Mode Control

[
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Sliding Mode Control

B The approach used here is by far smpler than the
formal Sliding Mode Control technique
Based on relay control
Depending on the current being on/off the throttle angle
rate will increase or decrease
B The sliding manifold will need to be adjusted for
these rates to give stable response

M The controller will be very simple with only 1
tuning parameter
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Sliding Mode Control
®We Il use the mode! identified with the EKF
a —aa +b = bz'aaref

| Negative number | | Positive number |

Ag=-agtag =3

Qe

N a

aref
a. 'as :ag' al’ef +a <O

Need to increase speed (increase control)
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Sliding Mode Control

M The controller isimplemented below:
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M Therelay detectsif control needs to be set
to max. value or minimum value (0)

It is aso possible to introduce a hysteresis to
reduce switching frequency
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System simulation: diagram

supply voltage (V)
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System simulation: front panel
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Hardware results

F Exgerimunis el sbm plef Tlcicl. v Biock Beprom oo PFESpien *

Fe N s BORO DS TG Wi H
3 L R L s [ e [ | T
=
T 1 EECE
=]
= 2
1o (= e
7=y |
R 0 E .
FaE e -
[.1-1] HE
T o e e il e I : . | o i
AT mm—— - S5 M - B .. L
e o=
B all
F -l_iulx_ o o o
= L
: AL Vekowon = P | T ey
I Hihee 1lorg —_
[ T TP ﬁ]" %!
PR T P o
el 1 7|
CHprad Dutear =
Pt + g

bvﬁv © The Applied Control Technology Consortium

Hardware results

waveform Chart _Pbig___

Sirmulation Time
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Hardware results

wavefarm Chart Plot 0 m I
o Tk

Amplitude
=
|

© The Applied Control Technology Consortium

0.8-
0.6-) 1
a =]
Sirrulation Time
Gamma= 0.05
Hardware results

‘Waveform Chart Bl m :

2.2

]

1.8

Amplitude
— B - o
1 | | |

e
o
1

0.6 -4

[

Simulation Time

Gamma = 0.01

19



© The Applied Control Technology Consortium

Hardware results
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Hardware results
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Simulation Time

Hardware results
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Thank you!
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