

Development and testing of complex automotive control systems using hardware-in-the-loop platform

Dr Alexandros Mouzakitis, BSc, MSc, PhD, CEng, MIET, MInstMC, MSAE Principal Engineer

Automotive Control SIG Meeting Nuneaton, Warwickshire, 23rd April 2008

Contents

- The challenge complexity of embedded control software
- Overview of vehicle electrical architecture
- Traditional vehicle development process and platforms
- Concept of the VITAL
- Model-based development process for ECU development
 - Requirements capture
 - Auto-code generation
 - VITAL development three phase process
- Model-based ECU software testing and validation process
- Concluding remarks

Jaguar Engineering Centre – Whitley, Coventry

Electronic control unit (ECU) memory usage trend

- Digital controls first introduced in 70's.
- First production units consisted of about 1 Kb of memory.
- Nowadays, it is not unusual for ECU to have 1 Mb of memory.
- 1000 times increase in memory over the last 30 years

Source: Thomas, M. G. (2003). Electronics systems testing and validation for commercial vehicles. SAE Technical Paper Series, 2003-01-3383.

What drives automotive system complexity?

- Customer demands for greater overall vehicle performance and comfort
- Reliability and quality
- Fuel economy
- Increasing restrictions on emissions levels
- Today, automobiles can contain up to 90 ECUs

Availability of more memory and microprocessor speed have provided the design engineers with greater flexibility, but also has driven greater complexity.

Electronic body control systems - the challenge

- Complexity of embedded software for automotive ECUs in modern cars is continuously increasing
- Electronic body systems (EBS) functionality is distributed among many ECUs providing the customer with functions such as security, lighting, seat comfort and windscreen cleaning
- These functions are highly visible, with significant customer interaction and yet often they are taken for granted
 - Potential to provide real "surprise & delight" features
 - Large opportunities for customer complaints
- New approach is essential for the development and testing of complex automotive systems

Vehicle electrical architecture

Traditional approach to ECU development

Traditional vehicle development platform

VITAL Virtual Integration and Test Automation Laboratory

VITAL concept

- Main features
 - Simulated or real ECUs (LS-CAN)
 - Simulated sensors and actuators
 - Simulated HS-CAN ECUs
 - Simple wiring harness
- Additional features
 - CAN gateway emulation
 - Controlled ECU power up sequence
 - Full fault insertion on all I/O (all 6 fault modes)
 - Signal conditioning for all digital and analogue I/O
 - Quiescent current measurement

Model-based development process for body control systems

Requirements capture

ECU development

VITAL – three phase process

Model-based ECU software testing

Problems with ECU model-based development process

- Significant culture shift is required
- Greater resource required earlier in the programme
- A danger of overlooking the importance of good requirements capture
- Software development skills and process required in-house
- No supplier to "kick" if errors found with functionality

Each of these issues should become less significant on each subsequent vehicle programme.

Advantages of model-based development

- Main Advantages
 - Specification interpretation errors virtually eliminated
 - Early demonstration and testing
 - Greater software re-use between programmes
 - Encourages continuous improvement
- Additional Advantages
 - Long term reduction in development effort and cost
 - Greater flexibility with supplier selection
 - Better control of brand functionality

Advantages of VITAL

- Main Advantages
 - Testing and validation commences much earlier, reducing late and expensive changes
 - » Testing using modelled ECUs
 - Testing using real ECU prior to production intent harness
 - Automated testing
 - Fewer prototype vehicles required
 - Testing can cover both static and dynamic vehicle conditions
- Additional Advantages
 - Removes reliance on all suppliers supporting a single delivery point before testing can start
 - Testing of system behaviour under fault conditions is easier

Applications – vehicle security/PEPS

Page 21

Applications – light sensor / intrusion sensor

Page 22

Future direction

- Electronics will continue to evolve at a very rapid pace
- The need for progress for better test techniques will continue to be very important
- Mechatronics will play an essential role as more and more mechanical components are controlled or replaced by software
- Infotainment/comfort and prognostics are the main areas to dominate future research and development activities
- Full vehicle simulator more electrical integration testing

Summary, concluding remarks

- Model-based development success
 - Started 2000 on current Land Rover T5 platform
 - Since used on XK sports, XJ and Range Rover
- VITAL success
 - Started 2003 on Jaguar XK sports platform
 - Since used on XF, Range Rover and XJ
- Jaguar now use model-based design in conjunction with the VITAL throughout the entire electrical body systems development process
- The main benefits to Jaguar are,
 - Higher quality validation
 - Problems can be identified earlier
- The major problems experienced have been linked to the required cultural changes

Contact details

- Dr Alexandros Mouzakitis
 - amouzak1@jaguar.com
 - +44 2476 206086

