

© 2008 University of Warwick

A Flexible and Reconfigurable Hardware-in-the-loop Simulator for a Vehicle Programme at Jaguar & LandRover

Dr Suguna Thanagasundram International Automotive Research Centre University of Warwick

Introduction

- Research Fellow in the Electrical & Simulations group in the IARC
- Peter Jones & Ross McMurran
- Evolutionary Validation of Complex Systems (EVoCS)
- VITAL (Virtual Integration and Test Automation Laboratory) at JLR (Whitley)
- Alexandros Mouzakitis & team

Seminar Outline

- Electronics in a vehicle
- Hardware-in-Loop (HIL) platform
- Limitations of this platform
- Reconfigurable & Flexible HIL platform based on patented add2 Genix technology

Electronics in a Car

Just about everything!

A Flexible and Reconfigurable Hardware-in-the-loop Simulator for a Vehicle Programme at Jaguar 4

IARC

Embedded control system usage

Typical automotive electrical architecture

IARC

A Flexible and Reconfigurable Hardware-in-the-loop Simulator for a Vehicle Programme at Jaguar 6

Electronic Control Unit (ECU) Overview

ECU is the generic term for automotive electronic control units

© 2008 University of Warwick

What is inside an ECU

The Hardware Interface of an ECU

ECU Development Process

© 2008 University of Warwick

HIL Systems

PXI (National Instrument)

LabCar (ETAS)

RT-Lab (Opal-RT)

Various Interactions between ECU & HIL

© 2008 University of Warwick

A Typical HIL System

The inside of a typical HIL system

Advantages of using a HIL platform

Advantages of using a HIL platform for validation of ECU functionality

- Reduced development costs and timescales
- →Availability of the system for 24 hours

→Safer testing conditions because of the ability to simulate operating conditions like fault and damaged conditions

→Functionality testing can begin earlier in the design process with models of the ECUs even before the actual ECU hardware become available

Weaknesses of existing HIL Platform

Main weaknesses are:

→Wiring harness HIL simulation platform needs to be redone each time the hardware interface of an ECU changes

→Uncertainty in module specifications

→Number of likely model variants

→Requirement for reusing HIL system in different applications

→Reusability of the HIL platforms from one vehicle programme to another is limited

Jaguar Reconfigurable HIL Platform

© 2008

IARC

A Flexible and Reconfigurable Hardware-in-the-loop Simulator for a Vehicle Programme at Jaguar 17

Jaguar Reconfigurable HIL Platform

Connector Panel Arrangement for an add2 HIL simulator

				0			
E-STOP	0 	O OFF			HP1	HP2	HP3
					0 0		00
		CANC ©0			HP5	HP6	HP7
, HCI	HC4 °O°	нс7 °0°	HC10 °O°	HC13 °O°	<u> </u>		
, HC2	HC5 	, HC8	HC11 	HC14 ៉(〇)			
ୄୖୖୖ	°C°	, С,	°C°	HC15 °O°			
				0			

© 2008

Genix Subrack

BackPlane of Genix SubRack

© 2008 University of

Outline illustration of add2 HIL Simulator

b) 14 Slot Subrack

Cenix PSU	8	0	10	11	12	13	14

c) 7 Slot Subrack with Genix PSU

d) USB Card Positions within a Subrack

Warwick

© 2008 **University of**

The Genix Pod

- → DG Differential Genix
- DGF Differential Genix with Fault Insertion
- → DGLF Differential Genix with Load & Fault Insertion
- DGELF Differential Genix with External Load and Fault Insertion

© 2008 University of

Genix Pods

	ECU+	ECU-	Lo	ad + Load	EC	U+ ECU-
0	100		0		1 100	
0	101		10		101	
	102	• • •	20	e	102	
>	103		30	e = 0.000	108	1 () () () () () () () () () (
D	104	1 1 1	40		104	
	105	1 1	50	6 (C)	105	
>	E 1 106		6	с : <u>с</u> о	106	
>	107	•••	70		107	
	= ⁻ 108		80	e 1 - e -	108	
2	109		90	6 I	109 3	
2	1010		100		1010	
2	1011		110	 1 1	1011	
2	1012		12	 • • • • • • • • • • • • • • • • • • •	1012	
	1013		13	0 0	1013	
2	1014		140	6	1014	
•	1015		150	•	1015	
1 10	0V 2 6xt 1 6xt 3 6xt 3	Fs	• 74	0V 2 0X 1 0X 1 0X 1	Fs Fs	
		A			\$ 	
	· · · · · ·	D B		· · · ·	· • •	• • •
	Supplies			Supplies	Fau	t Bus
	-	Fault			~	

Typical Front Panel Wiring

Type DGF

© 2008

© 2008 University of Warwick

Type DGELF

The HIL Power Supply System

- → Each Genix Pod can be connected to three different external voltage sources (Vext1, Vext2 or Vext3) as the high power rail
- one of two different 0V references (0V1 or 0V2) as the two
 low power rail
- A typical Genix Pod will reference to Vext1 which is supplied by PSU1, normally used as the VBatt supply, and 0V1 which is tied to ground.
- → When a programmable power supply is used as a source, the voltage can be continuously varied within the operating range of 5 to 22V

Signal conditioning which is reconfigurable by software

The unique and novel innovation in this HIL platform is the use of Genix configurable signal conditioning.

Each of the channel can be configured individually under software control

The front end can be designed and customized for different kind of sensors and has the capability to support all feasible combinations of the I/O interface of the ECUs.

Signal Conditioning which is software reconfigurable

The Genix based Pods have the capability to configure each channel according to its

→signal type

→Direction

→Bandwidth

→Gain

→Loading requirements

⇒internal loads can be pulled up to a supply rail or pulled down to ground

Signal Conditioning which is software reconfigurable

- \rightarrow has the ability to support either internal or external loads
- digital input circuit has a configurable threshold detection capability
- \rightarrow gain of the analogue inputs and outputs can be varied
- Analogue inputs can be conditioned using one of 3 preset filters

© 2008 University of

HIL Configuration Utility (HCU)

H1-7DS(Differential I/P) Configuration			X
Subrack Addr: 3 Slot: 1 Pod Slot: 1 Width: 1	ОК	(xir	nix)
Channels Litted: C 1 C 4 C 8 (• 116) C other Card Description :	Carred		чë
DGELF_T7_5 - Genix Signal Conditioning Carrier		ef cr	of (
ECU Name : Channel <u>N</u> ame :	Write C <u>a</u> rd	ar E	_중 표
TRM RIGHT DIRECTION INDICATOR	<< <u>P</u> icture	Ĕ	(Ba
Channel Present Channel Disabled Copy Channel			
Digital Input C Analogue Input C Digital Output	C Analogue Output		
Digital Input Analogue Input Digital Output	Analogue Output-		
V thr Vext/2 Range 30V C Active High	Gain 📃 💌		
Filter		Vin+ >	VThr = Vext/2
Input Filter Bandwith Full		BUIT	DV
Advanced Input Tupe Output			
		Vin NC RL 1.0228K	
Programmable Load ☐ Show E12 Values Only			
Impedance value 1.0228K Ohms to God		GND	
<u>Chan 0 1 2 3 4 5 6 7 8 9 10 1</u>	1 12 13 14 15		

© 2008 University of Warwick

Genix Module Input/Output Capability

Genix Module Type	Function	Digital Input	Digital Output	Analogue Input	Analogue Output
H1 Type 4 - DIOA	Fully Configurable I/O	Y	Y	Y	Y
H1 Type 5 - AO	Analogue Output	N	N	N	Y
H1 Type 6 - DO	Digital Output	N	Y	N	N
H1 Type 7 - ADI(DS)	Analogue/Digital Input	Y	N	Y	N
H1 Type 7 - ADI(DD)	Analogue/Digital Input	Y	N	Y	Ν
H1 Type 7 - ADI(SD)	Analogue/Digital Input	Y	N	Y	Ν
H1 DCO	Digital Current Output	N	Y *	N	N

IARC

Genix Module Configuration Capability

Genix Module Type	Direction (In/Out)	Type (Digital/Analogue)	Load Value	Pull-Up/Down	Range/Threshold
H1 Type 4 - DIOA	Y	Y	Y	Y	Y
H1 Type 5 - AO	N	N	N	N	N
H1 Type 6 - DO	N	N	Y	Y	N
H1 Type 7 - ADI(DS)	N	Y	Y	Y	Y
H1 Type 7 - ADI(DD)	N	Y	Y	Y	Y
H1 Type 7 - ADI(SD)	N	Y	Y	Y	Y
H1 DCO	Ν	N	N	N	N

The CAN Switching Strategy

IARC

A Flexible and Reconfigurable Hardware-in-the-loop Simulator for a Vehicle Programme at Jaguar 36

IARC

© 2008 University of Warwick

Other Key Features of the Software Reconfigurable HIL platform

- → CAN, Power Supply and LIN Switching either the HCU software or using the CAN based configuration bus
- High Current Capabilities
- → Fault Insertion Capabilities
- → Digital Current Output Modules

Example

Conclusion

- Software reconfigurable HIL platform described was fully implemented for a vehicle programme at JLR
- Reconfigurable platform has guaranteed high flexibility and portability in interfacing all kinds of ECUs, sensors and actuators
- Easier to suit the wiring harness of the test rig to adapt the ECU
 under test
- Robustness inbuilt in its design through its ability to support high current loads
- → The unique feature of the Genix signal conditioning module is that it has external load capabilities, fault insertion capabilities and high current capabilities all on one Pod card.

Genix modules have signal conditioning that is configurable by software.

